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1. INTRODUCTION

The functions of the form

C
m

i=0
aixmi, (1)

where in general the values ai and mi are complex numbers, are usually
called Müntz–Legendre polynomials and were called quasipolynomials by
A. O. Gelfond [7]. In this work, Gelfond obtains both lower and upper
estimates for the least uniform deviation from zero of the real monic
quasipolynomials (0 [ m0 < · · · < mm, am=1, ai, mi ¥ R) on [0, 1]. To do
this, he finds the real monic quasipolynomial having minimal quadratic
deviation from zero with respect to the weight function xp, p > −1, as well
as the value of such a minimal deviation. Some of the Gelfond’s ideas were
later used by E. Aparicio [1] to construct an orthonormal system of
complex quasipolynomials with respect the weight function xp, p \ 0, in the
interval (0, 1) and under the assumption Rmi > − 1+p2 . Further results



concerning Müntz–Legendre polynomials were obtained in [2, 3, 8, 9].
A systematic account of many of such results is given in [4, 5].

In the present paper, the aforementioned results of Gelfond are extended
to several variables. For simplicity, we shall only consider the two-dimen-
sional case, since the extension to higher dimensions is straightforward. In
Section 2 we give some properties of the orthonormal complex quasipoly-
nomials on (0, 1)×(0, 1). In Section 3, following Gelfond’s method, we
obtain bounds for the value of the least uniform deviation from zero of the
real monic quasipolynomials on [0, 1]×[0, 1].

2. ORTHONORMAL QUASIPOLYNOMIALS

Let p1, p2 > −1, and let m (1)0 , m (1)1 , ..., m (1)n1 and m (2)0 , m (2)1 , ..., m (2)n2 be two
sequences of different complex numbers ordered in the following way: if
n < m, then |hn | [ |hm | and, if |hn |=|hm |, then arg hn < arg hm. Moreover, we
assume that, for each j, we have m (i)j +m̄

(i)
j +pi+1 > 0, i=1, 2, where, as

usual, b̄ denotes the conjugate of the complex number b.
We consider the bivariate quasipolynomials on the square D :=

(0, 1)×(0, 1) having the form

Pn1, n2 (x1, x2)=C
n1

i=0
C
n2

j=0
a (n1, n2)ij xm

(1)
i
1 xm

(2)
j
2 , (x1, x2) ¥D, (2)

where the coefficients a (n1, n2)ij are complex numbers, and xm
(r)
s
r =em

(r)
s ln xr

(ln 1=0).
We wish to find an orthonormal system of quasipolynomials

{Pm, n(x1, x2)} on D with weight function xp11 x
p2
2 and with respect to the

inner product

(Pm, n, Pr, s)=FF
D
Pm, n(x1, x2) P̄r, s(x1, x2) x

p1
1 x

p2
2 dx1 dx2. (3)

Let {Pm(x1): m=0, 1, ...} and {Qn(x2): n=0, 1, ...} be two systems of
orthogonal polynomials in one variable on the interval (0, 1), with respect
to the weight functions xp11 and xp22 , respectively. Then, it is known that the
direct product

{Pm(x1) Qn(x2) : m, n=0, 1, ...}

is a bivariate orthogonal system on the square D, with respect to the weight
function xp11 x

p2
2 . Thus, from the formula for orthonormal Müntz–Legendre

160 FRANCISCO LUQUIN



polynomials in one variable [1, 3], we can assert the following result in
which we use the notations

ani+1(xi) :=D
ni

j=0
(xi−m

(i)
j ), āni+1(xi) :=D

ni

j=0
(xi− m̄

(i)
j ),

bni+1(xi) :=D
ni

j=0
(xi+m

(i)
j +pi+1), b̄ni+1(xi) :=D

ni

j=0
(xi+m̄

(i)
j +pi+1),

(5)

for i=1, 2.

Theorem 1. The complex quasipolynomials

Rn1, n2 (x1, x2) :=C
n1

i=0
C
n2

j=0
c (n1, n2)ij xm

(1)
i
1 xm

(2)
j
2

=D
2

i=1

5`m (i)ni +m̄ (i)ni +pi+1

× C
ni

k=0

1
(m (i)k +m̄

(i)
ni +pi+1)

b̄ni+1(m
(i)
k )

a −ni+1(m
(i)
k )

xm
(i)
k
i
6 (6)

n1 \ 0, n2 \ 0, form an orthonormal system, on the square D, with weight
function xp11 x

p2
2 , pi ¥ (−1,.), i=1, 2.

We remark that Theorem 1 can be directly derived from the orthonor-
mality condition of the polynomials without making use of the results for
one variable. To do this, we need the following lemma.

Lemma. Let em, n(x1, x2) be a monic polynomial of the form

em, n(x1, x2)=C
m

i=0
C
n

j=0
aijx

i
1x
j
2, amn=1, aij ¥ C.

If

em, n(mi, nj)=0, (i, j) ] (m, n), i=0, ..., m, j=0, ..., n,

then we have

em, n(x1, x2)=D
m−1

i=0
(x1−mi) D

n−1

j=0
(x2− nj).

Proof. For each j, 0 [ j [ n−1, we have

em, n(m0, nj)=em, n(m1, nj)=· · ·=em, n(mm, nj)=0,

and, therefore, the polynomial em, n(x1, x2) is a multiple of <n−1
j=0 (x2− nj).

Likewise, the relations

em, n(mi, n0)=em, n(mi, n1)=· · ·=em, n(mi, nn)=0, 0 [ i [ m−1,
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imply that em, n(x1, x2) is a multiple of <m−1
i=0 (x1−mi). Therefore em, n(x1, x2)

=<m−1
i=0 (x1−mi) <n−1

j=0(x2− nj). L

Proof of Theorem 1. Let {Rg
n1, n2 (x1, x2) :=;n1

i=0 ;n2
j=0 a

(n1, n2)
ij xm

(1)
i
1 xm

(2)
j
2 }

be a system of orthonormal complex quasipolynomials. Then

FF
D
Rg
n1, n2 (x1, x2) Ra

g
r1, r2 (x1, x2) x

p1
1 x

p2
2 dx1 dx2=˛

0 if (r1, r2) ] (n1, n2)

1 if (r1, r2)=(n1, n2),
(7)

and this implies that either

(Rg
n1, n2 , x

m̄
(1)
m11 x m̄

(2)
m22 )= C

n1

l1=0
C
n2

l2=0
a (n1, n2)l1l2 D

2

i=1

1
m (i)li +m̄

(i)
mi+pi+1

=0, (8)

for (m1, m2) ] (n1, n2), mi=0, ..., ni, i=1, 2, or

C
n1

l1=0
C
n2

l2=0
ā (n1, n2)l1l2 D

2

i=1

1
m (i)mi+m̄

(i)
li +pi+1

=0, (9)

for (m1, m2) ] (n1, n2), mi=0, ..., ni, i=1, 2. To solve the system (8), we
set

C
n1

l1=0
C
n2

l2=0
a (n1, n2)l1l2 D

2

i=1

1
m (i)li +xi+pi+1

=Cn1n2
en1, n2 (x1, x2)

bn1+1(x1) bn2+1(x2)
, (10)

where Cn1n2 :=;n1
i=0 ;n2

j=0 a
(n1, n2)
ij , and en1, n2 (x1, x2) is a monic polynomial

with complex coefficients of degree [ n1 in x1, and of degree [ n2 in x2,
which vanishes at all the points (m̄ (1)m1 , m̄

(2)
m2 ) with (m1, m2) ] (n1, n2),

m1=0, ..., n1, m2=0, ..., n2. By the preceding lemma, we have

en1, n2 (x1, x2)=D
2

i=1

5 D
ni −1

j=0
(xi− m̄

(i)
j )6 .

Then, (10) becomes

C
n1

l1=0
C
n2

l2=0
a (n1, n2)l1l2 D

2

i=1

1
m (i)li +xi+pi+1

=Cn1n2 D
2

i=1

<ni −1
j=0 (xi− m̄

(i)
j )

bni+1(xi)
. (11)

Multiplying (11) by <2
i=1(m

(i)
li +xi+pi+1), and taking xi=−m (i)li −pi−1,

i=1, 2, we obtain, for 0 [ l1 [ n1 and 0 [ l2 [ n2,

a (n1, n2)l1l2 =Cn1n2 D
2

i=1

5 1
(m (i)li +m̄

(i)
ni +pi+1)

b̄ni+1(m
(i)
li )

a −ni+1(m
(i)
li )
6 , (12)
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where the product <m
t=0, t ] k(xk−xt) has been written in the form

[<m
t=0(x−xt)]

−

x=xk . From the normality condition, we get

C
n1

l1=0
C
n2

l2=0
ā (n1, n2)l1l2 D

2

i=1

1
m (i)ni +m̄

(i)
li +pi+1

=
1

a (n1, n2)n1n2

. (13)

Taking complex conjugates in (11), substituting (x1, x2) by (m (1)n1 , m
(2)
n2 ) and

bearing in mind (13), we obtain

1
a (n1, n2)n1n2

=C̄n1n2 D
2

i=1

a −ni+1(m
(i)
ni )

b̄ni+1(m
(i)
ni )

. (14)

Letting (l1, l2)=(n1, n2) in (12) and multiplying by (14), we have

1=|Cn1n2 |
2 1
<2
i=1(m

(i)
ni +m̄

(i)
ni +pi+1)

,

that is

|Cn1n2 |=
= D

2

i=1
(m (i)ni +m̄

(i)
ni +pi+1) . (15)

Then, (6) follows from the fact that Rn1, n2 (x1, x2)=(|Cn1n2 |/Cn1n2 )
Rg
n1, n2 (x1, x2). L

From the general theory of orthonormal polynomials, we also have the
following result, where R̃n1, n2 (x1, x2) stands for the monic quasipolynomial
associated with Rn1, n2(x1, x2), that is R̃n1, n2(x1, x2) :=(1/c(n1, n2)n1n2 ) Rn1, n2(x1, x2).

Theorem 2. If Pn1, n2 (x1, x2) is a monic quasipolynomial of the type (2),
then the integral

FF
D
|Pn1, n2 (x1, x2)|

2 xp11 x
p2
2 dx1 dx2

is a minimum if and only if Pn1, n2 (x1, x2)=R̃n1, n2 (x1, x2). Moreover,

FF
D
|R̃n1, n2 (x1, x2)|

2 xp11 x
p2
2 dx1 dx2

=
1

|c (n1, n2)n1n2 |2
FF

D
|Rn1, n2 (x1, x2)|

2 xp11 x
p2
2 dx1 dx2

=D
2

i=1

5(m (i)ni +m̄ (i)ni +pi+1)
|a −ni+1(m

(i)
ni )|

2

|b̄ni+1(m
(i)
ni )|

2
6 ,

where ani+1(xi) and b̄ni+1(xi) are the same as in (5).
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Remark 1. Theorems 2 and 1 generalize results of Gelfond [7] and
Aparicio [1].

3. MINIMAL UNIFORM DEVIATION

In this section, we obtain both upper and lower bounds for the least
uniform deviation from zero of the real monic quasipolynomials on
D̄=[0, 1]×[0, 1]. We state the following.

Theorem 3. For i=1, 2, let pi > −1, let 0 [ m (i)0 < m (i)1 < · · · < m (i)ni , and
set

Mn1n2 := inf
Rn1, n2 ¥H

max
(x1, x2) ¥ D̄

|Rn1, n2 (x1, x2)|,

where H denotes the set, of all real monic quasipolynomials of the form (2).
Then:

Mn1n2 \ D
2

i=1

5(1+pi)1/2 (2m
(i)
ni +pi+1)1/2

<ni −1
s=0 (m

(i)
ni −m

(i)
s )

<ni
s=0(m

(i)
ni +m

(i)
s +pi+1)
6 (16)

and

Mn1n2 [ max
(x1, x2) ¥ D̄

min{A1(x1, x2), A2(x1, x2)}

×D
2

j=1

<nj −1
s=0 (m

(j)
nj −m

(j)
s )

<nj
s=0(m

(j)
nj +m

(j)
s +pj+1)

, (17)

where, for (x1, x2) ¥D,

A1(x1, x2) :=D
2

j=1

3(2m (j)nj +pj+1) x−(1+pj)/2j

×=2 C
nj

k=0
m (j)k +(nj+1)(pj+1)4 (18)
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and

A2(x1, x2) :=D
2

j=1

3Cj 11+
pj+1
m (j)nj

2 (pj+2)qj

×51+ 1
dj ln(1/xj)

(m (j)nj + ln(1/dj)+nj ln m
(j)
nj )6

× exp[(1+ej)(2ej+pj+1) rnj]4 (19)

and where, for j=1, 2,

rnj :=C
nj

k=1

1
m (j)k

,

ej= m (j)0 +dj (0 < dj < min[1, (m (j)1 −m (j)0 )/2]),

qj being the natural number determined by the inequalities

m (j)qj −1−m
(j)
1 < 1 [ m (j)qj −m

(j)
1 < m (j)qj − ej

and Cj > 0 being a constant independent of nj, xj, dj and pj.

Proof. Let Sn1, n2 (x1, x2) :=;n1
i=0 ;n2

j=0 aijx
m
(1)
i
1 xm

(2)
j
2 be a real monic quasi-

polynomial satisfying the condition of minimum

min
bij ¥ R, bn1n2=1

FF
D

1 C
n1

i=0
C
n2

j=0
bijx

m
(1)
i
1 xm

(2)
j
2
22xp11 xp22 dx1 dx2

=FF
D
S2n1, n2 (x1, x2) x

p1
1 x

p2
2 dx1 dx2,

with pi > −1, i=1, 2. Then, by Theorem 2,

Sn1, n2 (x1, x2)=D
2

i=1

5(2m (i)ni +pi+1)
a −ni+1(m

(i)
ni )

bni+1(m
(i)
ni )

× C
ni

r=0

1
(m (i)r +m

(i)
ni +pi+1)

bni+1(m
(i)
r )

a −ni+1(m
(i)
r )

xm
(i)
r
i
6

=D
2

i=1

5(2m (i)ni +pi+1)
a −ni+1(m

(i)
ni )

bni+1(m
(i)
ni )
6

×FF
D
f(x1u1, x2u2) u

m
(1)
n1
+p1

1 um
(2)
n2
+p2

2 du1 du2

=D
2

i=1

5(2m (i)ni +pi+1)
a −ni+1(m

(i)
ni )

bni+1(m
(i)
ni )

F
1

0
fi(xiui) u

m
(i)
ni
+pi

i dui6 , (20)

MÜNTZ–LEGENDRE POLYNOMIALS 165



where

f(t1, t2) :=D
2

i=1

5C
ni

r=0

bni+1(m
(i)
r )

a −ni+1(m
(i)
r )

tm
(i)
r
i
6=f1(t1) f2(t2),

fi(ti) :=C
ni

r=0

bni+1(m
(i)
r )

a −ni+1(m
(i)
r )

tm
(i)
r
i (i=1, 2).

Moreover,

FF
D
S2n1, n2 (x1, x2) x

p1
1 x

p2
2 dx1 dx2=D

2

i=1
(2m (i)ni +pi+1) 5a

−

ni+1(m
(i)
ni )

bni+1(m
(i)
ni )
62. (21)

Therefore, denoting by Tn1, n2 (x1, x2) the quasipolynomial in H such that

Mn1n2= max
(x1, x2) ¥ D̄

|Tn1, n2 (x1, x2)|,

we have

FF
D
S2n1, n2 (x1, x2) x

p1
1 x

p2
2 dx1 dx2 [ FF

D
T2n1, n2 (x1, x2) x

p1
1 x

p2
2 dx1 dx2

[
1

p1+1
1

p2+1
M2
n1n2 ,

and (16) follows from (21).
To show (17), let (x1, x2) ¥D. Consider the integral

−1
4p2

FF
C1 ×C2

D
2

j=1

3xzjj
d
dzj
5 1
zj+m

(j)
nj +pj+1

bnj+1(zj)
anj+1(zj)
6 dzj 4

=D
2

j=1

3 −1
2pi

F
Cj

xzjj
d
dzj
5 1
zj+m

(j)
nj +pj+1

bnj+1(zj)
anj+1(zj)
6 dzj 4

=D
2

j=1

5 ln xj C
nj

r=0

bnj+1(m
(j)
r )

a −nj+1(m
(j)
r )

xm
(j)
r
j

m (j)nj +m
(j)
r +pj+1
6 , (22)
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where Cj :={zj: |zj−m
(j)
nj /2|=m

(j)
nj /2+aj, 0 < aj < 1/2}, j=1, 2. Let ej be

such that m (j)0 < ej < (m (j)0 +m (j)1 )/2, j=1, 2. Separate the first term in the
sum, and rewrite the sum ;nj

r=1 as a complex integral over a semicircle
Cj with diameter on Rzj=ej and centre at zj=ej, surrounding the poles
m (j)1 , m (j)2 , ..., m (j)nj . Then, by (20) and (22), we obtain

D
2

j=1
F
1

0
fj(xjuj) u

m
(j)
nj
+pj

j duj

=D
2

j=1

3 −bnj+1(m
(j)
0 )

a −nj+1(m
(j)
0 )

xm
(j)
0
j

m (j)nj +m
(j)
0 +pj+1

+
1

2pi ln xj
F
ej+i.

ej − i.
xzjj

d
dzj
5 1
zj+m

(j)
nj +pj+1

bnj+1(zj)
anj+1(zj)
6 dzj 4 ,

where zj=ej+iyj. From this and from the estimate given in [7] for one
variable, we have

: F F
D
f(x1u1, x2u2) u

m
(1)
n1
+p1

1 um
(2)
n2
+p2

2 du1 du2 :

=: D
2

j=1
F
1

0
fj(xjuj) u

m
(j)
nj
+pj

j duj :

< D
2

j=1

3C −j
(pj+2)qj

m (j)nj

51+ 1
dj ln(1/xj)

(m (j)nj + ln(1/dj)+nj ln m
(j)
nj )6

× exp[(1+ej)(2ej+pj+1) rnj]4, (23)

where rnj , ej, dj and qj are the same as in the statement of the theorem, and
the constant C −j > 0 is independent of nj, xj, dj and pj. From (20) and (23),
it follows that

|Sn1, n2 (x1, x2)| < A2(x1, x2) D
2

j=1

a −nj+1(m
(j)
nj )

bnj+1(m
(j)
nj )

, (24)

where A2(x1, x2) is defined in (19). This provides an upper bound for Mn1n2
useful when both xi are not close to 1.

Next, we give another bound for |Sn1, n2 (x1, x2)| appropriate for values of
xi close to 1. Following Gelfond [7], we have

: F F
D
f(x1u1, x2u2) u

m
(1)
n1
+p1

1 um
(2)
n2
+p2

2 du1 du2 :

< D
2

j=1

3x−(1+pj)/2j
=2 C

nj

k=0
m (j)k +(nj+1)(pj+1)4 . (25)
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This, together with (20), yields

|Sn1, n2 (x1, x2)| < A1(x1, x2) D
2

j=1

a −nj+1(m
(j)
nj )

bnj+1(m
(j)
nj )

, (26)

where A1(x1, x2) is defined in (18).
The inequality (17) follows from (24), (26) and the fact that

Mn1n2 [ max
(x1, x2) ¥ D̄

|Sn1, n2 (x1, x2)|.

This completes the proof of the theorem. L

Remark 2. It is clear that the function A1(x1, x2) (resp. A2(x1, x2)) is
decreasing (resp. increasing) in each variable separately. Therefore, the
function min {A1( · , · ), A2( · , · )} is bounded on D̄.

Remark 3. For n2=0, Gelfond’s Theorem [7] is obtained.

The following corollary is a particular case of Theorem 3.

Corollary. If m (1)i =ih1, m (2)j =jh2, 0 < h1, h2 < 1, then

Mn1n2 \ D
2

j=1
[`2cj+o(1)] nhj −1/2j Nn1n2 (27)

and

Mn1n2 [ D
2

i=1
Kin

ci
i Nn1n2 , (28)

where

cj :=12 F
1

0

dxj
1+xhjj
2−1, (29)

Nn1n2 :=D
2

j=1

<nj −1
s=0 (n

hj
j −shjj )

<nj
s=0(n

hj
j +shjj +pj+1)

= exp 3D
2

j=1

5−nj F
1

0
ln

1+zhjj
1−zhjj

dzj+o(nj)64 ,

ci > max 11, 3
2
hi+

1
2
2

and the constant Ki > 0 does not depend upon ni.
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Proof. In view of the assumptions on the exponents m (h)i , the inequality
(27) follows from (16) on taking pi+1=cin

hi −1
i , where ci is given in (29).

Further, the inequality (28) follows from (17) on taking pi+1=ei=
di=nhi −1i and ln(1/xi)=n1−hii , i=1, 2. L

Remark 4. It should be observed that, for large enough ni, the values
of pi+1 used in the above proof to show (27) are close to the values of
pi+1 for which the maximum of the right-hand side in (16) is achieved [7].

4. CONCLUDING REMARKS

Remark 5. It is known [6] that the monic bivariate polynomial
Tn, m(x, y)=;n

i=0 ;m
j=0 aijx

iy j having minimal uniform deviation from zero
on D̄ is

Tn, m(x, y)=Tn(x) Tm(y),

where Tk( · ) is the monic Chebyshev polynomial on the segment [0, 1].
Therefore, if m (1)i =i and m (2)j =j, one finds that the two components of the
inequality (16) have the same order (see [7]).

Remark 6. In the real case, Eqs. (20) and (21) can also be obtained in
the following way. Consider the function of the (n1+1)(n2+1)−1
variables v00, v01, ..., vn1n2 −1 given by

F(v00, v01, ..., vn1n2 −1) :=FF
D

1 C
n1

i=0
C
n2

j=0
vijx

m
(1)
i
1 xm

(2)
j
2
22xp11 xp22 dx1 dx2,

with vn1n2=1. If this function attains its minimum value at (a00, a01, ...,
an1n2 −1), we have

1
2
“F

“vr1r2
(a00, a01, ..., an1n2 −1)

= C
n1

l1=0
C
n2

l2=0
al1l2 D

2

i=1

5 1
m (i)li +m

(i)
ri +pi+1
6=0,

an1n2=1, (r1, r2) ] (n1, n2), ri=0, ..., ni, i=1, 2. This equation is the same
as (8). Thus, formulas (20) and (21) follow by the same argument as in the
proof of Theorem 1.
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Remark 7. Other representations for the quasipolynomials (6) are

Rn1, n2 (x1, x2)=D
2

j=1

5(m
(j)
nj +m̄

(j)
nj +pj+1)1/2

2pi ln(1/xj)
6

×FF
c1 × c2

D
2

j=1

3xujj
d
duj
5 1
uj+m̄

(j)
nj +pj+1

b̄nj+1(uj)
anj+1(uj)
6 duj 4

and

Rn1, n2 (x1, x2)=D
2

j=1

5(m
(j)
nj +m̄

(j)
nj +pj+1)1/2

2pi
6

×FF
c1 × c2

D
2

j=1

5xujj
b̄nj+1(uj)

(uj+m̄
(j)
nj +pj+1) anj+1(uj)

duj6 ,

where the simple contour cj, j=1, 2, lies completely to the right of the
vertical line Ruj=−1/2, and surrounds all the zeros of the denominator in
the integrand. The last representation is the bidimensional analogue of
formula (2.9) in [3].
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